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The entropic lattice Boltzmann method �ELBM� is one among several different versions of the lattice
Boltzmann method for the simulation of hydrodynamics. The collision term of the ELBM is characterized by
a nonincreasing H function, guaranteed by a variable relaxation time. We propose here an analysis of the
ELBM using the Chapman-Enskog expansion. We show that it can be interpreted as some kind of subgrid
model, where viscosity correction scales like the strain rate tensor. We confirm our analytical results by the
numerical computations of the relaxation time modifications on the two-dimensional dipole-wall interaction
benchmark.
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I. INTRODUCTION

The lattice Boltzmann method �LBM� has become an es-
tablished tool in the domain of computational fluid dynam-
ics. It simulates the evolution of macroscopic quantities
�such as pressure and velocity� through mesoscopic pro-
cesses of collision and streaming of idealized particles mov-
ing on a lattice with discrete velocities �1�.

The most widely used collision operator that allows the
recovery of the weakly compressible Navier-Stokes �NS�
equations is the so-called lattice Bhatnagar-Gross-Krook
model �LBGK�. This model corresponds to a single relax-
ation time process towards a prescribed equilibrium distribu-
tion �discrete Maxwellian� as proposed by �2� in the case of
the continuous Boltzmann equation. The value of the relax-
ation time is directly related to the viscosity of the modeled
fluid.

Although quite successful, the LBGK model may lack of
accuracy and may suffer from numerical instability when the
lattice is not fine enough. A lot of research has been con-
ducted to improve the situation ��3–5� among others�. We
want here to focus on the entropic LBM �ELBM� models
�6,7�.

The ELBM differs from LBGK by two major aspects.
First, the equilibrium is not anymore a discretization of the
Maxwell-Boltzmann equilibrium distribution function but,
rather, the extremum of a discretized H function under the
constraint of mass and momentum conservation. Second, the
relaxation time is modified in order to achieve unconditional
stability by imposing the condition of nonincreasing H func-
tion after the collision.

The goal of this paper is to study in detail how this relax-
ation time is changing as a function of the flow properties
and then to propose a macroscopic interpretation of these
changes in terms of a subgrid model.

The paper is organized as follows. In Sec. II we briefly
recall the main concepts of the ELBM. In Sec. III we present
an analytical expression for the relaxation time as a function
of the model variables. An approximation of this expression
shows that the relaxation time departs from its bare value by
a quantity which scales like the strain rate tensor. In Sec. IV
we validate our analytical approximation with respect to the
full ELBM. Also, we consider a quantitative comparison of
ELBM and LBGK, for the dipole-wall collision benchmark
�see �8��. Finally, in Sec. V we present our conclusions.

II. ENTROPIC LATTICE BOLTZMANN METHOD

We now briefly describe the ELBM in order to introduce
the concepts and notations used in the following sections.
For further information the reader should refer to �6,7�.

The ELBM evolution equation reads �in lattice units
where the mesh size �x=1 and the time step �t=1�

f i�x + ci,t + 1� = f i�x,t� + �0
�

2
�f i

eq�x,t� − f i�x,t�� , �1�

where the f i, for i=0, . . . ,q−1, are the density distribution
functions corresponding to the q lattice speeds ci and f i

eq is
the equilibrium distribution function. The quantity �
=�0� /2 is the relaxation frequency. The corresponding re-
laxation time is then simply �=1 /�. The bare relaxation fre-
quency �0 is related to the viscosity of the fluid and � is the
correction that ensures the unconditional stability of the
scheme �see below for more details�. Note that the LBGK
model also obeys Eq. �1� but with �=2 and a specific ex-
pression of feq.

The equilibrium distribution function of the ELBM is de-
fined as the extremum of the following discretized H func-
tion:

H�f� = �
i=0

q−1

f i ln� f i

wi
�, f = �f i	i=0

q−1, �2�

where the wi are the weights associated with each lattice
direction. The extremum of H is calculated under the con-
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straint of mass and momentum conservation �we consider
only the athermal case�, namely

� = �
i=0

q−1

f i = �
i=0

q−1

f i
eq, �u = �

i=0

q−1

ci f i = �
i=0

q−1

ci f i
eq. �3�

The extremalization of Eq. �2� does not have an analytical
solution in general, but for the D1Q3 lattice �one dimension
and three velocities� and its tensorial products, the D2Q9 and
the D3Q27 �see Fig. 1�, the expression for f i

eq reads �see �9��

f i
eq = wi�


�=1

d ��2 −�1 +
u�

2

cs
2�

2u�

�3cs

+�1 +
u�

2

cs
2

1 −
u�

�3cs

�
ci�/��3cs�

� ,

�4�

where cs=1 /�3 is the speed of sound and d the physical
dimension.

The second order moment ��	
�0� of f i

eq is the nondissipative
part of the momemtum tensor and reads

��	
�0� = �

i=0

q−1

ci�ci	f i
eq = cs

2�	�	 + �u�u	 + O�Ma4� , �5�

where 	�	 is the Kronecker symbol and Ma= �u � /cs is the
Mach number.

Once we have f i
eq we still have to compute � to be able

to evaluate the collision operator. It is defined as the solution
of �7�

H�f� = H�f − �fneq� , �6�

which represents the maximum H-function variation due to a
collision. In this equation we have defined fneq= f− feq.

The above ELBM procedure �computing the equilibrium
distribution function and �� allows us to simulate the weakly
compressible Navier-Stokes equation up to O�Ma3� accuracy
�compared to O�Ma2� for the LBGK model� and with uncon-
ditional stability.

Note that Eq. �6� has to be solved numerically, typically
with a Newton-Raphson method. This operation is computa-
tionally expensive and, therefore, some optimization tech-
niques have been proposed in �10,11�.

III. ELBM AS A SUBGRID MODEL

In this section we derive an analyical approximation for
the value of �. We then show that, to first order in Ma, �
departs from the value 2 by a quantity containing the strain
rate tensor components. Furthermore, this expression scales
as the time step �t, thus revealing a subgrid correction.

The motivation to assume that ��2 is that a Chapman-
Enskog �CE� expansion �see for instance, �12�� of Eq. �1�
shows that the kinematic viscosity 
 reads


 = cs
2� 2

�0�
−

1

2
� . �7�

Numerical experiments show that the results obtained using
the ELBM or the LBGK are quite similar in well-resolved
lattices. Thus � must be close to 2. This observation will be
mathematically confirmed in Eq. �13� below.

Let us then rewrite � as

� = 2 + �, ��� � 1. �8�

We can expand Eq. �7� to first order in �,


 = 
0 −
cs

2

2�0
� + O��2� , �9�

where 
0=cs
2�1 /�0−1 /2� is the bare kinematic viscosity. We

see that 
 is an effective kinematic viscosity made by the
fluid viscosity plus an extra term related to the ELBM. We
want to compute this last contribution in order to understand
its physical meaning.

Therefore let us evaluate � through Eq. �6�. Rewriting f
= feq+ fneq and remembering that according to the CE expan-
sion feq�O�1� and fneq�O�Kn� �Kn is the Knudsen number�
one can expand the right-hand side �rhs� of Eq. �6� around feq

up to O�Kn3� �the O�Kn� and O�Kn2� terms give the trivial
solutions �=0 and �=2� and one gets �this result is also
found in �10��

−
�2

6 �
i=0

q−1
f i

neq3

f i
eq2 + ��−

1

2�
i=0

q−1
f i

neq2

f i
eq +

1

2�
i=0

q−1
f i

neq3

f i
eq2 �

+ �
i=0

q−1

f i
neq ln� f i

eq

wi
�

=0

+ �
i=0

q−1
f i

neq2

f i
eq −

1

2�
i=0

q−1
f i

neq3

f i
eq2 + O�f i

neq4
� = 0.

�10�

We easily see that the term proportional to ln�f i
eq /wi� is null

by replacing f i
eq according to Eq. �4� and by remembering

that the zeroth and the first moments of f i
neq are identically

zero.

FIG. 1. Velocities ci connecting a lattice site to its eight neigh-
bors on a D2Q9 lattice. The vector c0=0 is additionally introduced
to describe a rest particle population.
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We are left with the following equation to solve for �:

−
C

6
�2 +

�

2
�− B + C� + B −

1

2
C = 0, �11�

where B and C are defined as

B � �
i=0

q−1
f i

neq2

f i
eq , C � �

i=0

q−1
f i

neq3

f i
eq2 . �12�

In what follows we need to discuss the order of magnitude of
different terms. We have two nondimensional numbers in-
volved in the distribution functions, namely the Knudsen and
the Mach numbers. These numbers are related by the follow-
ing relation Kn=Ma /Re, where Re is the Reynolds number.
Therefore if we assume that Re1, we can safely replace
the Kn number by Ma in what precedes. This means that B
�O�Ma2� and C�O�Ma3�. Then, solving the quadratic Eq.
�11� and keeping only the physically relevant solution for ��

we find

�+ =
3

2
−

3

2

B

C
+

1

2C
�− 3C2 + 6BC + 9B2 = 2 −

C

3B
+ O�Ma2� ,

�13�

where in the first equality we kept only the “�” part because
�− is nonphysical in the low Mach number limit �scales like
1/Ma� and in the second line we expanded the square root
around 9B2 up to first order in the Mach number. We now
want to evaluate �=−C / �3B�, the deviation from 2 �i.e.,
from the LBGK collision�. Therefore we replace f i

eq by its
value �see Eq. �4�� and expand the fraction to first order in
the Mach numbers. We find

� = −
�i=0

q−1f i
neq3/wi

2

3��i=0
q−1f i

neq2/wi

. �14�

To continue the evaluation of � we need an expression for
f i

neq. We will approximate its value by the first order term in
the CE expansion f i

�1� �see �12,13� for details�:

f i
�1� = − wi�t

�

�cs
2Qi:�u = − wi�t

�

�cs
2Qi:S �15�

=�t
wi

2cs
4Qi:�

�1�, �16�

where Qi��=ci�ci�−cs
2	��, �t is the time step, and

S =
1

2
��u + ��u�T�, ��1� = �

i=0

q−1

cici f i − ��0�, �17�

and

��1� = −
2cs

2�

�
S .

Replacing this relation in Eq. �14� one gets

� = −
�t

3�cs
4

�i=0
q−1wi�Qi:�

�1��3

�i=0
q−1wi�Qi:�

�1��2 . �18�

We are now left with the evaluation of the two sums. Let us
start with the denominator

�
i=0

q−1

wi�Qi:�
�1��2 = ���

�1���	
�1��

i=0

q−1

wi�ci�ci� − cs
2	���

��ci�ci	 − cs
2	�	�

= cs
4���

�1���	
�1��	��	�	 + 	�		���

= 2cs
4��	

�1���	
�1�, �19�

where between the first and the second step we used the
lattice isotropy properties �iwici�ci�ci�ci	
=cs

4�	��	�	+	�		��+	��	�	� and the summation convention
over repeated greek indices. We can now evaluate the sum in
the numerator of Eq. �18�,

�
i=0

q−1

wi�Qi:�
�1��3 = ���

�1���	
�1����

�1��
i=0

q−1

wi�ci�ci� − cs
2	���

��ci�ci	 − cs
2	�	��ci�ci� − cs

2	���

= − cs
6����6���

�1� + �������

+ K���	�����
�1���	

�1����
�1�, �20�

where K���	��=�i=0
q−1wici�ci�ci�ci	ci�ci�. As before the step be-

tween the first and the second equation is performed using
the isotropy properties of the lattice; but this time we see that
we are left with a sixth order tensor. The lattices used to
recover the NS equations do not require the sixth order isot-
ropy property �only up to order four is needed�. The D2Q9
and D3Q27 are no exceptions. This would indicate that �
will not be isotropic on these kinds of lattices even at lowest
order in the Mach number. Let us for now suppose that we
anyway have sixth order isotropy to proceed with the calcu-
lation. The sixth order isotropy conditions give us

K���	�����
�1���	

�1����
�1� = cs

6����
�1�����

�1����
�1� + 6�������

+ 8���������� . �21�

Therefore Eq. �20� becomes

�
i=0

q−1

wi�Qi:�
�1��3 = 8cs

6���
�1����

�1����
�1�. �22�

Finally one finds for �

� = −
2�t

3�cs
2

���
�1����

�1����
�1�

���
�1����

�1� . �23�

Replacing this relation into Eq. �13� we obtain

� = 2 −
4�t

3�cs
2

���
�1����

�1����
�1�

���
�1����

�1� . �24�

In order to obtain a result which is easier to understand
physically we can replace ��1� by S using Eq. �17�:
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� = 2 +
4�t

3�0�

S��S��S��

S��S��

. �25�

Multiplying on both sides by � and solving we get

� = 1 +�1 +
4�t

3�0

S��S��S��

S��S��

� 2 +
2�t

3�0

S��S��S��

S��S��

,

�26�

where in the last equality we expanded the square root up to
O�Ma�. Finally we use this last relation to evaluate �=�
−2 and we can substitute � in Eq. �9�,


 = 
0 −
�tcs

2

3�0
2

S��S��S��

S��S��

. �27�

We see that the viscosity correction scales like �S� and this is
similar to Smagorinsky’s subgrid model �14� for turbulent
viscosity 
=
0+
t with


t = Csmago�x2�S��S���1/2. �28�

However, here, the viscosity corrections can be either posi-
tive or negative and present the ability to backscatter the
energy. Finally the factor �t indicates that in the limit of a
fine lattice resolution ��t→0� the correction to 
0 vanishes,
as expected for a subgrid model. There still remains an open
question for us that would require further investigation. Is
the subgrid model of Eq. �27� nothing else than an artifact of
the ELBM, or is it a realistic representation of the unresolved
physics? This question will be addressed in a future paper.

IV. NUMERICAL BENCHMARK

In this section we will validate the above analytical ex-
pressions for � by comparing numerical simulations per-
formed with the various ways to compute it. For this purpose
we will show that the ELBM goes to the LBGK as we refine
the grid and that our approximation gives similar results with
the exact ELBM solver. Finally we will contrast our results
obtained with bounce-back, with the most accurate simula-
tion we ran with more accurate boundary conditions �see
below for more details�. For the sake of the discussion, we
need to introduce a name for the different entropic collision
operators that we will compare.

The first approach uses a numerical method �Newton-
Raphson algorithm� to compute � by solving Eq. �6�. We
name this approach NELBM for numerical entropic lattice
Boltzmann model.

The second approach uses approximation Eq. �20� to
compute �. We call it AELBM-NONISO for approximate
entropic lattice Boltzmann with nonisotropic expression.

Finally, model AELBM-ISO gets � from approximation
�24� and assumes an isotropic sixth order tensor.

A. Dipole-wall interaction test case

We now compare the NELBM, AELBM-NONISO, and
AELBM-ISO on the so-called dipole-wall interaction bench-
mark. It is based on Ref. �8� and describes the case of a
self-propelled dipole in a square box �= �−1,1�� �−1,1�.

The initial condition is given by two counter-rotating mono-
poles. The first one, located at �x1 ,y1�= �0,0.1� has positive
core vorticity and the second one, located at �x2 ,y2�
= �0,−0.1� has negative core vorticity. The initial velocity
field �ux ,uy� is given by

ux = −
1

2
��e��y − y1�exp�− �r1/r0�2�

+
1

2
��e��y − y2�exp�− �r2/r0�2� �29�

and

uy = +
1

2
��e��x − x1�exp�− �r1/r0�2�

−
1

2
��e��x − x2�exp�− �r2/r0�2� , �30�

where ri
2= �x−xi�2+ �y−yi�2, i=1,2, r0=0.1 is the monopole

diameter, and ��e�=299.528 385 375 226 its core vorticity.
This dipole has a net momentum directed towards the right
wall in the x direction. At some point it will hit the wall and
this will be the origin of turbulent dynamics and therefore of
fast velocity variations. Since the analytical solution of �
scales like the shear rate, this benchmark is well-suited to
test our evaluation of �.

During the collision between the dipole and the wall, we
observe a peak of mean enstrophy, computed as

��t� =
1

2
�

−1

1 �
−1

1

�2�x,t�d2x , �31�

where �=�xuy −�yux is the vorticity. This value will be com-
pared to �peak=933.6, which was found in �8� using a pseu-
dospectral code, to gather information about the accuracy of
our development in terms of the overall flow dynamics.

For this benchmark we use a Reynolds number of Re
=625 and initialize our problem the following way. First we
solve a Poisson equation

�2p�x� = − � · ��u · ��u�, x � � , �32�

�p�x�
�n

= 0, x � �� �33�

using a second order finite difference scheme to get the cor-
rect initial pressure. Then we initialize the f i using the first
order approximation of the CE expansion f i� f i

�eq�+ f i
�1� �see

Eq. �16��.
We also used six different resolutions: N=500, 1000,

1500, 2000, 2500, and 3000 in each spatial dimension. In
order to avoid Mach number errors �see �13�� the character-
istic velocity of the flow is scaled like umax=umax refN /Nref.
This scaling actually means that, when refining the grid, we
keep �x2 /�t constant, which also means that �0 does not
have to change to keep the viscosity constant. In our bench-
marks we take the reference values to be Nref=500 and
umax ref=0.01.

The boundary conditions �BC� used are fullway bounce-
back �BB� which are consistent with the entropic formulation
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since they do not allow an increase of the H function on the
wall. In order to have second order accuracy in space, the
actual location of the wall is in the middle of the last two
lattice sites.

The dipole-wall interaction is simulated with three ways
of calculating � until the physical time t=0.371 is reached.
This time corresponds to the enstrophy peak �peak=933.6.

A first result is that AELBM-NONISO and AELBM-ISO
models are very close. Figure 2 shows the relative error to
�peak as a function of the space resolution, for both the iso-
tropic and nonisotropic ways of computing �. Due to the
great similarity between the two models and for the sake of
simplicity, we only keep the AELBM-ISO approximation un-
til the end of this paper.

In Fig. 3 we compare the accuracy of NELBM, AELBM-
ISO, as well as two LBGK models using, respectively, the
BB and the regularized boundary �RB� conditions �see
�4,15��. We see that the error is very similar for the NELBM
and the AELBM-ISO, thus indicating that our analytical ex-
pression for � as a function of the strain rate tensor is mean-
ingful.

At low resolution the difference between LBGK-BB and
both ELBM codes is quite important. As the resolution in-
creases the results become very close. We observe that the
ELBM converges faster to the reference solution than the
LBGK model with bounce-back.

We must also point out that the error for N=1000 is rather
small for all ELBM. This result is due to the fact that for
N=500 the enstrophy is way below �peak. Then at N
�1000 the value of the peak becomes larger than �peak,
therefore at some point the numerical value computed with
the ELBM crosses the �peak value and actually this happens
at about N=1000. Therefore the very good agreement of that
point is rather a numerical accident than a feature of the
model.

Finally we observe that the LBGK-RB model with the
regularized boundary conditions outperforms all other ap-
proaches in terms of accuracy. Therefore the quality of
boundary conditions seems to play a more important role on
the precision of the simulation than the bulk dynamics.

These results suggest that ELBM �which uses bounce-
back� is only marginally more accurate than LBGK-BB.
Both seem to be equivalent when the spatial resolution is fine
enough. Of course ELBM is always stable, even at an insuf-
ficient resolution; but in this case, it is far from clear whether
the ELBM provides the correct physical behavior.

Finally, we study, in a quantitative way, the values of � as
computed by NELBM and its approximation, AELBM. We
consider two norms to evaluate the difference between the
numerical and analytical �’s. The sup and L2 errors are de-
fined as

��NELBM − �AELBM�sup = sup
i,j

��NELBM�i, j� − �AELBM�i, j�� ,

�34�

��NELBM − �AELBM�L2 = ��
i,j

��NELBM�i, j� − �AELBM�i, j��2,

�35�

where i , j are all the lattice nodes. The results are shown in
Fig. 4. We observe that our analytical approximation of � in

10
3

10
−3

10
−2

N [Units of the lattice]

R
el

at
iv

e
er

ro
r

AELBM−ISO
AELBM−ANISO

FIG. 2. Relative error on the enstrophy peak �with respect to
�8�� as a function of space resolution, for the AELBM-ISO and
AELBM-NONISO approximations.
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FIG. 3. Relative error on the enstrophy peak with respect to the
resolution for the LBGK-BB �bounce-back BC�, LBGK-RB �regu-
larized BC�, NELBM, and AELBM-ISO.
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FIG. 4. Difference of the value of � as computed from Eq. �6� or
Eq. �25�.
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terms of the strain rate tensor converges with about second
accuracy in space to the numerical solution of Eq. �6�. With
N=3000 and a L2 norm of 10−2, we see that the average
difference between the two ways of calculating � is
10−2 / �3000�2�10−9.

V. CONCLUSION

We showed, by giving an analytical evaluation of the vis-
cosity correction, that the entropic lattice Boltzmann model
can be interpreted as a subgrid model in the following sense:
when the grid is under-resolved there is a correction to the
viscosity which vanishes when increasing the resolution. We
found that this correction goes to zero at the same rate as the
time step �t. When taking the limit of the lattice spacing
�x→0 while keeping the ratio �x2 /�t constant, this means
that the subgrid viscosity also scales as �x2, as in the stan-
dard Smagorinsky model.

Although the subgrid viscosity has a more complicated
expression than Smagorinsky’s one and can be positive or
negative, it is, in magnitude, proportional to the strain rate.
This subgrid correction was also found to be �slightly� aniso-

tropic at O�Ma� for the standard fourth-order isotropic lat-
tices, such as D2Q9 or D3Q19.

From the benchmark we ran, we can nevertheless not con-
clude that this subgrid correction is physically sound or sim-
ply a numerical artifact to ensure numerical stability. Simu-
lations of homogeneous turbulence conducted by Vahala �16�
seem to indicate that ELBM and large eddy simulations such
as the Smagorinsky model give identical results.

Finally we did not obtain an important gain in numerical
accuracy for the bounce-back boundary condition between
the LBGK and ELBM, and one can notice that using alter-
native boundary conditions, one can achieve results by one
order of magnitude better. It is not clear, however, whether
the regularized boundary condition is compatible with the
ELBM scheme.
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